Brother and sister duo of Pietro and Wanda Maximoff become reluctant Avengers in the new film. They have been characters in the comic books for years, and are two of the most promiscuous characters in terms of which stories they enter. Pietro has appeared in X-Men, Fantastic Four, and even the DC Comics Justice League of America.
Wanda (Scarlett Witch) and Pietro (Quicksilver) are
different kinds of Avengers. They don’t have fancy toys like Iron Man; they
don’t have as much martial training as Natasha Romanov or Hawkeye. They aren’t
gods from another planet like Thor, but they do have some similarities to Hulk
and Captain America.
Dr. Banner was a victim of gamma radiation–induced mutation
during his research and Captain America had his body altered via science. The
Maximoffs’ are mutants, but they were born with their individual mutations – heck, Magneto is
their father.
Quicksilver’s mutations let him run amazingly fast, up to
Mach 4 (4x the speed of sound, about 3044 mph) in some iterations of his
character. He’s strong too, some websites say he can bench press about 1000
pounds. This is pretty amazing stuff, and I’m wondering how these feats might
come about.
How would Quicksilver’s physiology have to be altered in
order for him to achieve faster than normal speeds? Believe it
or not, science has identified mutations that could account for at least some of
his abilities.
But it is true that Quicksilver would need large muscles and muscles
that would move quickly. Mammals have two basic types of skeletal muscle
fibers, slow twitch (red, type I) and fast twitch (Type II, white). Slow twitch
are good for endurance. They use oxygen well and have lots of myoglobin (an
oxygen carrier like hemoglobin). Fast twitch are for speed and they come in two
flavors. Type IIa are good for speed and endurance, and Type IIx are for pure, short-term speed.
People are born with a mixture of Type I and Type II fibers,
usually around 50:50. Sprinters usually have more Type II fibers, maybe 60:40.
Quicksilver must be 99:01 or more; Usain Bolt is 90:10 fast twitch and I don’t see him coming close to the speed of sound.
A ridiculously high fast twitch ratio is genetic, not a mutation
per se, but it would be mighty unusual. My guess is that Quicksilver would be
mostly Type IIa, since he can run fast for hours, Bolt maxes out at about 200
meters.
There is a certain mutation might help Pietro increase his fast twitch fibers. In a 2015 study, knocking out a gene called Fnip1 (codes for
folliculin interacting protein-1) led to an increase in slow twitch fibers. Fnip
works with follicullin (imagine that) in the area of energy and nutrient
sensing. If having less Fnip1 leads to more slow twitch, then maybe more Fnip1 might call for making more energy in the cell, which
would tend to support Type II fiber development.
Other mutations can affect muscle performance as well. The
gene for angiotensin converting enzyme (ACE) comes in several forms. One form,
termed D, is associated with increased speed in athletes. The normal form is
called I; but in a study of Japanese runners, people with I/D or D/D (you have
two copies, one from mom and one from dad) were much faster. This is just one
of many studies to conclude that the D allele is associated with speedy
muscles.
There is another protein called alpha-actinin 3. If a person
has a specific mutation in the gene for this protein, called the X allele, then
the individual will have more muscular endurance, and perhaps more speed,
according to a 2014 study.
More than 10 other genes have polymorphisms (small changes)
that can be associated with promoting or inhibiting speed and endurance. There
is no study showing an athlete with all the polymorphisms that make you faster
or stronger – but Quicksilver would likely need them all if he wants to
approach Mach 4.
Aside from muscle mass and speed, our Avenger of interest
would need the oxygen and carbohydrates to power those muscles – certainly much
more than you or I need. Oxygen is taken from the air by the lungs and the
oxygen is carried to the muscles by the blood. When sugar and oxygen get to the
muscle, they are used to produce ATP in the mitochondria. Quicksilver needs
more oxygen, more blood flow, more carbohydrate and more mitochondria if he
wants to be really fast. We’ve got mutations for that.
Heat shock protein 72 (HSP72) usually works in protecting
proteins from damage, but it can have other functions. A 2014 study showed that activating
HSP72 increases contraction of the heart, oxygen usage, and mitochondria number
in cells. There are mutations that gives constitutively active HSPs (working all the time). It
is these forms that could increase energy production in muscle.
A 2014 paper described
a mutation in a Japanese family that led to hyperthyroidism. Increased thyroid
function leads to increased cardiac output, stroke volume (amount of blood
moved with each heartbeat) and heart rate. We better give Quicksilver one of
these mutations as well.
He needs more oxygen, so we also better provide Pietro with
a mutation in growth hormone receptor. A 1998 study showed that increased
growth hormone (GH) in adolescent males was associated with higher VO2
(amount of oxygen moved to blood). A recent study indicates that if you knock
out the growth hormone receptor (GHRP) protein in mice, it is also associated
with higher VO2. This suggests that GHRP mutations result in more
circulating GH, and higher levels of GH lead to increased VO2 via
some receptor-independent mechanism.
Finally, Quicksilver has to get more carbohydrates to the
cells, which means he has to take in more carbohydrate as well. A mutation in
the primary cilia of the POMC neurons of the hypothalamus (in the brain) leads
to dysregulation of appetite (see this post). If you have this mutation, you’re always hungry, a condition
called hyperphagia. This would lead to more calories and more energy for those
strong muscles.
This could also be accomplished by mutations in the appetite
hormones ghrelin and/or leptin. Leptin tells you when you are full, so a
mutation that reduces its function would make you hungry, as would a mutation
that increases the levels or function of the hunger hormone, ghrelin.
A recent study shows that
the brain can visualize and recognize an image in just 13 milliseconds, but Quicksilver will need a serious upgrade to his operating system to go as fast as he is reputed to run.
Or will he? Another study shows that small animals have high
metabolic rates, and higher metabolic rates are associated with faster brain processing speeds. Like Neo in The
Matrix, perhaps Quicksilver’s increased metabolic rate due to thyroid
mutations (see above) will make time slow down for him. This is how houseflies
keep from being swatted (see this post), so it could work for him too.
Personally, I’m wondering what kind of mutations Pietro
would need to prevent the horrible chafing he would probably experience. Wouldn’t he cook himself, or at least burn his crotch to ash? I guess this is
where the fiction part of the story comes in.
Contributed by Mark E. Lasbury, MS, MSEd, PhD
Reyes, N., Banks, G., Tsang, M., Margineantu, D., Gu, H., Djukovic, D., Chan, J., Torres, M., Liggitt, H., Hirenallur-S, D., Hockenbery, D., Raftery, D., & Iritani, B. (2015). Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy Proceedings of the National Academy of Sciences, 112 (2), 424-429 DOI: 10.1073/pnas.1413021112
Henstridge, D., Bruce, C., Drew, B., Tory, K., Kolonics, A., Estevez, E., Chung, J., Watson, N., Gardner, T., Lee-Young, R., Connor, T., Watt, M., Carpenter, K., Hargreaves, M., McGee, S., Hevener, A., & Febbraio, M. (2014). Activating HSP72 in Rodent Skeletal Muscle Increases Mitochondrial Number and Oxidative Capacity and Decreases Insulin Resistance Diabetes, 63 (6), 1881-1894 DOI: 10.2337/db13-0967
Nakamura, A., Morikawa, S., Aoyagi, H., Ishizu, K., & Tajima, T. (2014). A Japanese family with nonautoimmune hyperthyroidism caused by a novel heterozygous thyrotropin receptor gene mutation Pediatric Research, 75 (6), 749-753 DOI: 10.1038/pr.2014.34
Westbrook, R., Bonkowski, M., Arum, O., Strader, A., & Bartke, A. (2013). Metabolic Alterations Due to Caloric Restriction and Every Other Day Feeding in Normal and Growth Hormone Receptor Knockout Mice The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 69 (1), 25-33 DOI: 10.1093/gerona/glt080
Potter, M., Wyble, B., Hagmann, C., & McCourt, E. (2013). Detecting meaning in RSVP at 13 ms per picture Attention, Perception, & Psychophysics, 76 (2), 270-279 DOI: 10.3758/s13414-013-0605-z
Gunel, T., Gumusoglu, E., Hosseini, M., Yilmazyildirim, E., Dolekcap, I., & Aydinli, K. (2014). Effect of angiotensin I-converting enzyme and α-actinin-3 gene polymorphisms on sport performance Molecular Medicine Reports DOI: 10.3892/mmr.2014.1974
No comments:
Post a Comment