We talked last week about how we are developing plasma shields
to protect astronauts from space radiation. In a way, that’s the “don’t get
hit” part in a nutshell. But space radiation isn’t trying to hit you; it’s just there, and so are you.
In Star Trek, the deflector shields were meant to avoid or
minimize the damage of things meaning to destroy them. Like Mayweather’s right
cross, photon torpedoes are sent with bad intentions.
Today let’s concentrate on emerging technologies to protect
ourselves from things coming at us with bad intentions. In practical terms,
using the technology we have right now, this would be most considered armor,
but we are quickly moving to deflector shields. And some new armors now have
deflecting capabilities.
One of the problems with plasma-based deflector shields is
that you are relying on charges to deflect charged things away from you.
Projectile weapons are often uncharged, although the metals in them can be
charged. You would have to rely on destroying them with energy before they got
to you rather than deflecting them away – and engineers are working on that.
Armor is designed to blunt the effect of some projectile, or an
explosion + shrapnel. In most cases, the thicker the armor the better – like the
traditional methods of shielding spacecraft from cosmic radiation. But newer
types of armor are meant to protect in a more pro-active way.
Ablative armor is a physical shield intended to be sacrificed.
Its destruction dissipates much of the energy of the incoming projectiles or
beam. We use ablative armor on returning vehicles from space. The heat shield
tiles on the old Apollo missions were a form of ablative armor. The space
shuttles had reusable tiles, but Orion is going back to an ablative system on
the underside portion of the vehicle that will be hottest (4000˚ F).
A newer technology, called advanced ablative armor, will anticipate an attack and put
additional armor where needed when needed. It's essentially a big catcher’s glove - stick it out where the pitch is coming. Fullerene would be a good candidate for
ablative armor – it is strong and light.
Real science has made more use of reactive armor than ablative armor. Reactive armor is also called
active protection. This armor does something to protect the target, it doesn't
rely on its material strength alone.
The earliest type of reactive armor was (and is) explosive.
Explosive reactive armor (ERA) is meant to repel the killing mechanism of anti-tank missiles and rockets. High explosive armor piercing (HEAT)
projectiles do their damage by breaking the outer hull by kinetic force, and
then setting off an explosion that injects superheated copper through the hull
and into the cab where the electronics and people are.
The
army has been touting the effectiveness of ERA
since
2007, but the 2011 paper independently
confirmed
it. This is a Bradley tank with the ERA
installed
as an additive armor. It needs to be a certain
distance
from the hull of the tank in order to protect it
maximally.
Each individual box is an explosive unit, so
protection
is precise to the area being struck.
|
What you have to watch out for is tandem HEAT weapons, where
one is fired right after the other at the same target point. The ERA charge which protects against the first won’t be there for the second.
ERA has been around since the late 1970’s, but there are new versions that actually sense the incoming round and set off the explosive armor
BEFORE the rocket gets to the tank or the personnel carrier. Advanced ERA's been further improved by
making the inside of the charge non-explosive, merely a rubber that turns to
gas and expands the outer plate before the HEAT weapon hits. This is called
bulge armor and is helpful against that second shot from a HEAT weapon, not
just the first.
Electric reactive armors are being developed as well. One
type uses two charged plates separated by an insulator. When a projectile
penetrates the outer hull, the first plate touches the second. This completes an electrical circuit that
releases a large electric charge and destroys the projectile.
A second type of electrical armor, developed by the British Defence Science and Technology Laboratory, uses a thin layer of a supercapacitor (a material that can store a large electrical charge over time) just internal to the outer armor. When a projectile is sensed by the radar/video/ESP of the armored target, it releases the charge from the capacitor onto the outer metal armor at the precise spot that is being targeted. This creates a huge EM field with flux lines spreading out from the target and acts as a temporary force field to repel/deflect/destroy the incoming projectile. Sounds a lot like a Star Trek deflector shield to me.
The American Defense labs have a version of reactive armor
as well, called the American Iron Curtain. It's termed an Active Protection System
(APS – because the military is the best in the world at creating initialisms).
In this system, highly sophisticated radar and optical systems detect incoming
projectiles and even classifies them as to their type and danger.
PASS uses a couple of high power lasers. The first creates
an intense energy beam that strips the air molecules of their electrons,
creating a plasma cloud. The plasma creation (very hot at the point of plasma,
but dissipating rapidly as you move away, creates a small explosion, more like
a loud bang.
A second laser then hits the plasma cloud just milliseconds
later. The plasma absorbs the energy, expands rapidly which creates a shockwave
and an even bigger bang. You can set this system up to fire repeatedly in a
pattern, creating a wall of light and sound. Depending on the energy levels of
the lasers, the wall will appear at various distances from the source.
Increase the energy of the wall (or whatever shape you want to project)
and PASS can go from purely disorienting to lethal. Or it could disrupt
incoming fire. This was the aim of the US Navy Plasma Point Defense System that
was abandoned on the 2000’s, but advances present in PASS have made it feasible again. The PASS wall can’t be seen through and is impenetrable to infrared waves,
but it carries some of the same drawbacks as Star Trek shields; you can’t see
out either, and you couldn’t fire through it.
Finally, metamaterials may act as a defense shield some day.
Structure in three dimensions gives metamaterials their characteristics instead
of just the molecules of the material that makes them up. To give an example,
cotton T-shirts have certain characteristics based on being made of cotton
(soft, stretchy, can be dyed, shows off my guns, etc.). But a metamaterial
T-shirt made from cotton might be able to deflect sound waves or do some other
amazing things with EM waves, based on the shape that the cotton fibers are
given in the shirt.
a study in 2014 that used S-shaped metamaterials cells can absorb low frequency
energy. The energy waves enter the S-shaped cells and bounce around until there
energy is dissipated. Right now the potential use is for shielding electronics
from EM pulses, but they could expand.
For an invisibility cloak, you would want the metamaterial
to bounce the light around like a prism and then let it go after it passes
around the object. But a cloaked object using an absorbing metamaterial would
look black; the absorber doesn’t reflect the light so none returns to your eye.
This would make for a bad cloak but a great shield - if you can find a way to
keep the absorbed energy from destroying the shield.
Right now, the absorbers work in the low gigahertz range, so
they absorb radio and microwaves, but a new study shows that some are being
developed that absorb in the terahertz range. This is within infrared and
visible light frequencies, the types of light used in high-energy laser
weapons. Go a bit higher and perhaps we could absorb ultraviolet waves. But
wouldn’t that just be sunscreen?
Next week – Mr. Data was an android, but at his most basic
he was a robot with artificial intelligence. We’ve got rudimentary robots, but
that AI thing is tougher.
Contributed by Mark E. Lasbury, MS, MSEd, PhD
No comments:
Post a Comment